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Abstract
We propose a density functional for anisotropic fluids of hard body particles.
It interpolates between the well established geometrically based Rosenfeld
functional for hard spheres and the Onsager functional for elongated rods.
We test the new approach by calculating the location of the nematic–isotropic
transition in systems of hard spherocylinders and hard ellipsoids. The results
are compared with existing simulation data. Our functional predicts the location
of the transition much more accurately than the Onsager functional, and almost
as well as the theory by Parsons and Lee. We argue that it might be suited to
study inhomogeneous systems.

1. Introduction

The density functional approach is one of the most powerful and widely applicable approaches
to nonuniform fluids [1]. Its idea is to express the free energy as a functional of locally varying
one-particle densities F{ρ(r)}, with an ideal gas contribution and an excess free energy which
accounts for the interparticle interactions. This allows one to calculate the structure and
properties of fluids with various kinds of inhomogeneity. Density functionals for simple fluids
have reached a considerable degree of sophistication and are able to describe such complex
phenomena as freezing, wetting and surface melting [1].

One of the most established density functionals for hard sphere fluids is the Rosenfeld
functional [2]. It reproduces by construction the Percus–Yevick solution for the correlation
function, which is known to be very good [3]. As a consequence, it provides highly accurate
predictions for the structure of inhomogeneous hard sphere fluids [4]. It has been used
successfully to study mixtures of hard spheres [5] and polydisperse fluids [6]. After a simple
anisotropic mapping procedure it can be applied to fluids of fully aligned ellipsoids [7].
Exploiting the Gauss–Bonnet theorem, it has been generalized for isotropic molecular fluids [8].
This generalized functional has been used as a starting point to calculate direct correlation
functions of isotropic multicomponent fluids [9]. A Rosenfeld type approach has been
developed for mixtures of rods and needles, assuming that the needles are too thin to interact
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with each other directly [10], and for systems containing only one single rod immersed in a
fluid of spheres [11]. However, to our knowledge, the Rosenfeld functional has not yet been
extended to general anisotropic fluids.

The simplest density functional for anisotropic particles is the Onsager functional [12],
which truncates the virial expansion after the leading coefficient. Onsager showed that this
functional produces a nematic–isotropic phase transition [12] in fluids of sufficiently elongated
particles. Its predictions are in good agreement with experimental results on systems of tobacco
mosaic viruses [13]. One can even show that it describes the transition exactly in homogeneous
systems of infinitely elongated rods [14]. Thus any functional for nematic liquid crystals should
reduce to the Onsager functional in this limit.

In the present paper, we propose a density functional for hard anisotropic particles which
interpolates between the Rosenfeld functional and the Onsager functional. It reduces to the
Rosenfeld functional in the case of particles with spherical symmetry, and to the Onsager
functional for homogeneous fluids of infinitely elongated particles at density close to zero.
As a first test of the functional, we have calculated the nematic–isotropic transition for hard
spherocylinders and hard ellipsoids, and obtained reasonable results. We believe that our
functional might provide a useful new approach to the study of inhomogeneous liquid crystals,
e.g. the study of interfacial phenomena such as surface anchoring.

2. Background

We consider a fluid of hard anisotropic particles with positions r and orientations � . The
grand canonical free energy is the minimum of the free energy functional

β�[ρ] = βF id [ρ] + βFex [ρ] +
∫

dr d� ρ(r,�)[µ − V (r,�)] (1)

with respect to the one-particle density ρ(r,�), where β = 1
kB T is the Boltzmann factor with

the temperature T , µ the chemical potential and V (r,�) summarizes all external potentials.
The first term describes the ideal gas contribution

βF id =
∫

dr d� ρ(r,�)(ln[ρ(r,�)λ3
T ] − 1) (2)

with the de Broglie wavelength λT . The second term Fex is the excess free energy, the central
quantity in density functional theories [1].

In the Onsager theory, the excess free energy of two hard particles is given by

βFex
O = − 1

2

∫
dr d� dr′ d� ′ ρ(r,�)ρ(r′,� ′)M(r − r′,�,� ′). (3)

The Mayer function M takes the value (−1) if two particles at (r,�) and (r′,� ′) overlap
and vanishes otherwise. In the homogeneous case, the one-particle density ρ does not depend
on r and can be written as ρ(r,�) = ρ f (�). The expression (3) then reduces to

βFex
O

N
= ρ

2

∫
d� d� ′ f (�) f (� ′)ν(�,� ′), (4)

where ν(�,� ′) is the covolume of two particles with orientations � and � ′, and N the total
number of particles. Equation (4) corresponds to a virial expansion up to second order. As
mentioned in the introduction, the Onsager theory is exact in the limit of infinitely elongated
particles [14]. Compared to real thermotropic liquid crystals, it tends to overestimate the shape
anisotropy required to observe a nematic phase at a given finite density.

A natural extension of the Onsager model would be to include higher order terms in the
virial expansion. In principle, this is feasible, and an extension of the Onsager functional up
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to third order was actually carried out for ellipsoids [15]. However, the calculations are very
cumbersome due to the increasing complexity of the integrals. As long as one is interested in
homogeneous systems, one way to overcome the problem is the decoupling approximation.
It consists of a resummation of the virial expansion, where the first virial coefficients are
calculated exactly, and the remaining ones are approximated by a mapping onto a reference
system. Given a virial expansion of the form

βFex

N
=

∞∑
l=1

ρl

l
Bl+1[ f (�)], (5)

the decoupling approximation reads [16–19]

βFex

N
=

r∑
l=1

ρl

l
Bl+1[ f (�)] +

[
β Fex,re f

N
−

r∑
l=1

ρl

l
Bref

l+1

]
Br+1[ f (�)]

Bref
r+1

, (6)

where Bl+1[ f (�)] are the virial coefficients of the anisotropic fluids, calculated exactly up to
the r + 1 order, and ref refers to the reference system. Two possible reference systems have
been proposed: the hard sphere fluid and the isotropic fluid of the particles under investigation.
If r = 1 and the reference system is the hard sphere fluid with the Carnahan–Starling equation
of state [20], we recover the Parsons–Lee functional [16, 17]

βFex
P L = −1

8

(4 − 3η)

(1 − η)2

∫
dr d� dr′ d� ′ ρ(r,�)ρ(r′,� ′)M(r − r′,�,� ′), (7)

where η is the packing fraction. The Parsons–Lee functional predicts accurately the location of
the nematic–isotropic phase transition for a wide range of shape anisotropies [21, 22]. It can
also be applied to inhomogeneous systems. However, it does not describe the microscopic
structure very well: it yields very crude correlation functions [23]3 and produces rather
unrealistic density profiles in inhomogeneous systems as a consequence [24].

The success of the Parsons–Lee theory in predicting the isotropic–nematic coexistence
densities motivated Poniewierski and Holyst [25] and Somoza and Tarazona [26] to combine
the decoupling approximation with a ‘weighted density approximation’ (WDA) scheme [27–
29]. Both are constructed such that one automatically recovers the Onsager functional in
the low density limit. In the hard sphere limit, the version of Somoza and Tarazona [26] and
related [30] versions reduce to the well known Tarazona functional [28]. The latter incorporates
the Carnahan–Starling equation of state and the Percus–Yevick direct correlation function for
homogeneous hard sphere fluids, and has been used with great success to study inhomogeneous
hard sphere fluids and solids. Applied to systems of spherocylinders, the extensions [26, 30] of
the Somoza functional generate a nematic phase and several smectic phases. Graf and Löwen
have put forward a simplified ‘modified weighted density approximation’ (MWDA), and used
it to reproduce complex phase diagrams of spherocylinder fluids [31].

Besides the Tarazona functional, another equally successful hard sphere functional
has established itself in recent years: the fundamental measure theory or Rosenfeld
functional [2, 4, 5]. It has the advantage of being based on somewhat more fundamental
considerations: it does not require the explicit input of the equation of state and the direct
correlation functions; instead they pop out automatically. One obtains by construction the
Percus–Yevick solution. Moreover, the functional is formulated a priori for general convex
particles of arbitrary geometry. It thus seems to call for a generalization to anisotropic fluids.
Unfortunately, there is one problem: the original Rosenfeld functional does not reproduce the
Onsager functional in the low density limit.
3 The direct correlation functions in the Parsons–Lee model are directly proportional to the Mayer function at all
densities.
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Here, we propose a simple modification of the Rosenfeld functional which solves that
problem for anisotropic particles, and reduces to the original Rosenfeld functional for isotropic
particles. Like the functional of Somoza and Tarazona, our functional interpolates between an
established hard sphere functional and the Onsager functional. Thus we hope that it will be
equally useful.

Before introducing our approach, we sketch briefly the basic equations of the original
Rosenfeld functional [2]. It can be formulated for general multicomponent fluids of convex
hard particles. In our case, different components i may be identified with different particle
orientations. The functional then reads

βFex
R =

∫
dr (�1(r) + �2(r) + �3(r)), (8)

�1(r) = −n0(r) ln(1 − n3(r)) (9)

�2(r) = n1(r)n2(r) − n1(r) · n2(r)

1 − n3(r)
(10)

�3(r) =
1
3 n3

2(r) − n2(r)(n2(r) · n2(r))

8π(1 − n3(r))2
λ. (11)

The �s depend on the weighted densities

nα(r) =
∑

i

∫
dr′ ρi (r

′)w(α)

i (r − r′), (12)

with the number density of the i th component ρi(r) and the weight functions

w
(0)

i (r) = Ci (r̂)δ(Ri (r̂) − r)Ki(r̂)/4π w
(2)

i (r) = Ci (r̂)δ(Ri (r̂) − r)

w
(1)
i (r) = Ci (r̂)δ(Ri (r̂) − r)Hi(r̂)/4π w

(3)
i (r) = �(Ri(r̂) − r)

w
(1)
i (r) = Ci (r̂)δ(Ri (r̂) − r)n̂i (r̂)Hi(r̂)/4π w

(2)
i (r) = Ci (r̂)δ(Ri(r̂) − r)n̂i(r̂).

(13)

Here r̂ denotes the unit vector in the direction of r, Ri(r̂) the radius from the centre of a particle
of type i to the surface in the direction r̂, Hi(r̂) and Ki(r̂) the local mean and Gaussian curvature
at that specific surface point [33]4, n̂i(r̂) the outward unit normal (see figure 1) and δ and θ

are the usual delta and step function. The factor Ci(r̂) ensures that integrals over the weight
functions w

(α)
i (r) and w

(α)
i (r) (α �= 3) are surface integrals over the surface of the particle i .

For spherical particles, it can be omitted. In general, it is given by

Ci (r̂) =
√

det gi (r̂)/ det gi,sph(r̂), (14)

where gi (r̂) is the local metric tensor of particle i , and gi,sph(r̂) that of a reference sphere of
radius Ri(r̂). (In polar coordinates,

√
det gi,sph(r̂) = R2

i (r̂) sin(θ)). Finally, the factor λ in
equation (11) ensures that the dimensional crossover for hard spheres is reproduced correctly
and that the hard sphere system exhibits a solid–fluid transition in three dimensions [4].

λ = (1 − ξ(r)2)3

1 − 3ξ(r)2
with ξ =

∣∣∣∣n2(r)

n2(r)

∣∣∣∣. (15)

Alternatively, equation (11) can be replaced by a more modern version due to Tarazona [32],
which depends on an additional tensorial weighted density and does not contain the ad hoc
factor λ.

4 Let κa(r) and κb(r) be the two local principal curvatures at the surface point r. Then the mean curvature is
Hi(r) = (κa + κb)/2, and the Gaussian curvature Ki (r) = κaκb .
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Figure 1. Illustration of R(r̂) and n̂(r̂).

3. Construction of the functional

As mentioned before, the Rosenfeld functional describes hard sphere fluids very successfully.
In principle, it could also be applied to molecular fluids. However, it has the serious drawback
that it does not reduce to the Onsager functional in the low density limit. Even worse, a
closer inspection of equations (8)–(15) reveals that it has no contribution at all which would
favour parallel alignment of particles in a homogeneous fluid. Hence it cannot produce stable
homogeneous anisotropic fluids.

The reason for this failure can be understood by looking at the relation between the Mayer
function and the weight functions in more detail. For hard spheres, the Mayer function for a
pair of particles at positions ri and r j can be decomposed exactly as [2]

−Mi j =w
(0)
i ⊗ w

(3)
j + w

(3)
i ⊗ w

(0)
j + w

(1)
i ⊗ w

(2)
j + w

(2)
i ⊗ w

(1)
j − w

(1)
i ⊗ w

(2)
j − w

(2)
i ⊗ w

(1)
j ,

(16)

where ⊗ denotes the convolution product:

w
(α)
i ⊗ w

(β)

j =
∫

dr w(α)(r − ri )w
(β)(r − r j ). (17)

This decomposition together with equations (8)–(12) ensures that the functional reproduces
the correct virial expansion at least up to second order. Unfortunately, a decomposition of
the type above is no longer valid for anisotropic particles. Therefore, the Onsager limit is
not recovered. Chamoux and Perera [9] have proposed ways to cure the virial expansion on
the level of the direct correlation function, for the case of isotropic molecular fluids [9]. A
systematic way of dealing with the problem on the level of the functional itself would be to
add a correction term on the right-hand side of equation (16), to deconvolute it (if possible),
and then rederive a Rosenfeld type functional on the basis of this new decomposition. This
can be done for rod–sphere interactions [11]. An extension to the general case is currently
under way [34]. Unfortunately, it turns out that infinitely many additional terms are required in
the decomposition in order to make equation (16) exact, and the numerical treatment becomes
difficult unless one resorts to approximations.

Here we propose a simpler, numerically perhaps more tractable ansatz—a straightforward
modification of equations (9)–(11). Instead of keeping n1 and n1 as separate quantities, we
suggest replacing the products n1(r)n2(r) and n1(r) · n2(r) by new joint quantities n12(r)

and ñ12(r) such that the functional reproduces correctly the Onsager limit. This is achieved
as follows: we define the functions

g(�i ,� j , ri − r j ) ≡ gi j := −Mi j − w
(0)
i ⊗ w

(3)
j − w

(3)
i ⊗ w

(0)
j (18)
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h(�i ,� j , ri − r j ) ≡ hi j := w
(1)

i ⊗ w
(2)

j + w
(2)

i ⊗ w
(1)

j − w
(1)

i ⊗ w
(2)

j − w
(2)

i ⊗ w
(1)

j , (19)

and

H eff(�i ,� j , ri − r j ) = gi j/hi j . (20)

Then we replace n1(r)n2(r) and n1(r) · n2(r) by

n12(r) := 1
2

∫
d�i d� j dri dr j ρ(ri ,�i )ρ(r j ,� j )H eff(�i ,� j , ri − r j)

× (w
(1)
i (ri − r)w

(2)
j (r j − r) + w

(2)
i (ri − r)w

(1)
j (r j − r)) (21)

ñ12(r) := 1
2

∫
d�i d� j dri dr j ρ(ri ,�i )ρ(r j ,� j )H eff(�i ,� j , ri − r j)

× (w
(1)

i (ri − r) · w
(2)

j (r j − r) + w
(2)

i (ri − r) · w
(1)

j (r j − r)). (22)

The effective function H eff is constructed such that the functional reduces to the Onsager
limit (3) in the low density limit. Thus the mean curvature H (r̂) in the weight functions w(1)

and w(1) (equation (13)) is effectively replaced by a function H H eff which depends on the
orientations of a pair of particles, and their distance vector. In the hard sphere limit, H eff is
constant, H eff ≡ 1, and we recover the original Rosenfeld functional. Note that n12 and ñ12

contain information on pairs of interacting particles. We thus give up the idea of formulating
a functional which depends only on single, orientation independent weighted densities5. An
approach in the same spirit has been introduced by Schmidt for mixtures of spheres and
needles [10].

The functional can be simplified by making the approximation that H eff only depends on
the orientations �i and � j . In that case we solely require that the second virial coefficient
is exact in the homogeneous fluid for every distribution of orientations. In the homogeneous
fluid the contributions to the free energy density having vectorial character vanish. Carrying
out the integrals on the spatial variables, we obtain

βFex
R

N
= − ln(1 − η) +

ρRS
∫

d� d� ′ f (�) f (� ′)H eff(�,� ′)
1 − η

+
1

24π

ρ2 S3

(1 − η)2
, (23)

where R, S are the mean radius and the surface of the body, respectively, and η is the packing
fraction. The mean radius is defined as the integral of the mean curvature over the surface of
the particle, R = ∫

S d A H/4π . Equation (23) must reduce to the Onsager functional (4) in the
low density limit ρ → 0. With η = v0ρ this leads to the equation

H eff(�,� ′) =
1
2ν(�,� ′) − v0

RS
, (24)

which replaces equation (20) in this approximation.
In the case of homogeneous fluids, both (20) and (24) give the same bulk free energy as a

function of the orientation distribution f (�):

βFex
R

N
= − ln(1 − η) − η

1 − η
+

ρ

2

∫
� d� ′ f (�) f (� ′)ν(�,� ′)

1 − η
+

1

24π

ρ2 S3

(1 − η)2
. (25)

Note that for isotropic fluids, f (�) is constant, and the free energy (25) is identical to that
obtained with the original Rosenfeld functional.

5 Our functional can be cast in the form of a weighted density functional if the weighted densities are allowed to
depend on orientations.
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D

Figure 2. Illustration of a spherocylinder.

4. Application to spherocylinders and ellipsoids

We have tested our approach by calculating the location of the nematic–isotropic phase
transition for hard spherocylinders and uniaxial prolate ellipsoids. The results were compared
with the corresponding phase diagrams obtained from the Onsager theory, the Parsons–Lee
theory and simulation data [22, 35, 36].

A spherocylinder consists of a cylinder of length L and diameter D capped by a hemisphere
of diameter D at both ends (see figure 2).

The excluded volume of two spherocylinders which have the angle θ with respect to each
other is [12]

ν(θ) = 2DL2 sin(θ) + 2π D2 L + 4π D3/3. (26)

In the case of ellipsoids, the exact calculation of the excluded volume is quite involved. One
possibility is to follow [37], another to exploit the Perram–Wertheim routine for the ellipsoids’
contact function [38]. Here, we have adopted a scheme outlined in [22], because it is sensibly
faster. We consider a pair of equal uniaxial prolate ellipsoids with semiaxes a, a and b; one
ellipsoid is mapped onto a sphere of radius a, and the other one is mapped onto a particular
biaxial ellipsoid which has always one semiaxis equal to a. The remaining two semiaxes
depend on the relative orientation of the two ellipsoids and can easily be evaluated. The
excluded volume between the sphere and the biaxial ellipsoids can be calculated using an
expression by Kihara for the orientationally averaged excluded volume between two convex
hard particles [39]. The covolume of the original pair of uniaxial prolate ellipsoids is then
recovered by inverting the mapping. In the past, many theoretical studies [16, 17, 40–42]
have considered systems of ‘hard Gaussian overlap’ particles, i.e. ellipsoids where the contact
distance is approximated by an expression due to Berne and Pechukas [43]. However, it was
noted some years ago [15] and shown recently [44] that the comparison of these theoretical
results with true ellipsoids’ behaviour is not appropriate.

Both in the cases of hard spherocylinders and hard ellipsoids, the properties of the fluids are
fully determined by the density and the shape anisotropy parameters, x = L/D and k = b/a,
respectively.

In the homogeneous fluid, the orientation dependent part of the excess free energy has the
same form in the Onsager model, the Parsons–Lee model and our model:

βFex [ f (�)]

N
= λ

2

∫
d� d� ′ f (�) f (� ′)ν(�,� ′), (27)

where λ = ρ in the Onsager model, λ = ρ

8
(4−3η)

(1−η)2 in the Parsons–Lee model and λ = ρ

2(1−η)

in our model. Once a model free energy functional is chosen, the next step is to determine
the thermodynamically stable phase for a range of densities. We thus need to calculate the
functions f (�) that extremize the free energy under the constraint

∫
d� f (�) = 1. For all

three models under consideration, this amounts to finding the solution of the Onsager integral
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equation

ln(ξ f (�)) = −λ

∫
d� ′ f (� ′)ν(�,� ′), (28)

where the constant ξ is determined from the normalization condition. The equation always
has an isotropic solution f (�) = constant, and may have an anisotropic solution in addition
at certain values of λ.

We have solved the Onsager integral equation for values of λ in the range of λ∗ =
2DL2λ ∈ [8:12] for spherocylinders, and λ∗ = 2ab2λ ∈ [8:25] for ellipsoids, in steps of
0.01. To this end, we have applied an iterative numerical method, which is simple and reliably
convergent [45]. The integrals were calculated by the Gauss–Legendre quadrature, using 50
points per integral and checking that with 100 points we get the same results. The initial guess
for the highest value of λ∗, λ∗ = 12 or λ∗ = 25, was

f (θ, φ) = 1

2π

exp(P2(cos θ))∫
du exp(P2(u))

,

where P2(u) is the second Legendre polynomial. At lower λ∗, the iteration was started with
the anisotropic solution for the previous, next higher, value of λ∗. The convergence criterion
was [ n p∑

i=1

[ fm+1(θi) − fm(θi)]2

] 1
2

< 10−6 (29)

where n p refers to the number of points used to perform integrals and m to the mth iteration.
The dependence on φ has been omitted because the distribution function does not actually
depend on it. The resulting distribution functions for λ∗ = 11.01, 10.01, 9.01 and 8.01
for spherocylinders are shown in figure 3. Our orientational distribution functions compare
well with those in [46]. Due to the particular shape of the covolume between a pair of
spherocylinders, the solutions depend on λ∗, but not on x . We found anisotropic solutions
for values λ∗ � 8.88, in agreement with Lasher [47].

In the case of ellipsoids, the solution for fixed λ∗ depends on the shape anisotropy
parameter k. In figure 4, solutions at different value of k are shown for λ∗ = 15.01. The
lowest value of λ∗ which still yields an anisotropic solution is a decreasing function of k.

Next we must identify the stable phases and the coexistence line. At coexistence, both the
pressure and the chemical potential are equal:

PN = Pi ; µN = µi . (30)

We have solved these two equations with Newton’s method, i.e., we found the density ρP
I at

which an isotropic phase has the pressure PN and the density ρ
µ

I at which an isotropic phase
has the chemical potential equal to µN . At the coexistence line, both densities must be equal.
Hence we calculated the nematic ρN at which |ρP

I − ρ
µ

I | was minimal. Usually the value of
the minimum was in the range |ρP

I − ρ
µ

I | ∈ [10−9; 10−5].
The results are shown as a function of the anisotropy in figure 5 for spherocylinders and in

figure 6 for ellipsoids. They are compared with simulation data of Bolhuis and Frenkel [35],
Frenkel and Mulder [36] and Camp et al [22].

The figures demonstrate that our functional performs much better than the Onsager
functional, and only slightly worse than the Parsons–Lee functional. As has already been
demonstrated elsewhere for spherocylinders and ellipsoids [21, 22], the predictions of the
latter are almost exact. The slightly inferior performance of our functional is probably related
to the fact that the Parsons–Lee approach is based on the Carnahan–Starling equation of state,
whereas the Rosenfeld functional yields the Percus–Yevick equation of state for hard spheres,
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Figure 3. Solutions �(θ) = 4π f (θ) of the Onsager integral equation for spherocylinders for
λ∗ = 11.01, 10.01, 9.01 and 8.01.
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Figure 4. Solutions �(θ) = 4π f (θ) of the Onsager integral equation for ellipsoids for k = 4.0,
5.0, 10.0 and 20.0 at a fixed value of λ∗ = 15.01.

which is slightly inferior. In principle, one can modify the Rosenfeld functional such that it
reproduces the Carnahan–Starling equation of state for fluids, along the lines of an approach
suggested by Tarazona [48]. Unfortunately, this is done at the expense of a less accurate
description of crystals [48].

Our approach could possibly be improved by making the coefficient of �3 in equation (11)
dependent on the orientation distribution f (�): formally, the Rosenfeld functional has
the form of a third order Y -expansion [49]. Mulder and Frenkel [50] and Tjipto-Margo
and Evans [15] have generalized the latter to convex anisotropic bodies and applied it to
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Figure 5. Isotropic–nematic transition line of hard spherocylinders as a function of elongation
D/L and reduced density ρ∗ = ρ/ρcp (ρcp is the density of a close-packed lattice). Solid curves
show predictions of our approach (25), dotted curves the Onsager result (3) and dashed curves the
Parsons–Lee prediction (7). Filled squares are simulation results from Bolhuis and Frenkel [35]
(for larger D/L); only one transition density is given in this reference).
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Figure 6. Isotropic–nematic transition line of hard ellipsoids as a function of elongation a/b
and reduced density ρ∗ = ρ/ρcp (ρcp is the density of a close-packed lattice). Solid curves
show predictions of our approach (25), dotted curves the Onsager result (3) and dashed curves the
Parsons–Lee prediction (7). Filled squares are simulation results from Camp et al [22]. The points
at k = 3.0 are taken from [36].

hard ellipsoids, determining the third virial coefficient numerically. Their nematic–isotropic
coexistence densities were lower than those observed in the simulations. In contrast, our
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functional tends to overestimate the coexistence densities. This suggests that introducing
orientation dependent coefficients will shift the transition lines in the correct direction.

However, these modifications complicate the functional. We have shown that already our
simple version describes uniform fluids reasonably well. Compared to the Parsons–Lee theory,
it has the advantage of being based on a reference density functional which describes the local
structure of hard spheres very accurately. It interpolates on the level of the direct correlation
function, i.e. the local bulk structure, between the Percus–Yevick solution for hard spheres,
which is very good, and the Onsager solution for infinitely elongated particles, which is exact.
Therefore, we believe that it will be suited to describe inhomogeneous anisotropic fluids.

5. Summary and outlook

We have introduced a new density functional for liquid crystals, which interpolates between the
successful Rosenfeld functional for hard sphere fluids [2] and the Onsager functional for liquid
crystals [12]. As a first test, we have calculated the nematic–isotropic phase diagram for hard
spherocylinders and hard ellipsoids and shown that the new functional produces reasonable
results. In the next step, it will be applied to calculate the local liquid structure in homogeneous
fluids. For example, direct correlation functions in nematic fluids of ellipsoids have been
determined recently from computer simulations [51–53]. They can also be calculated from
our density functional. This will be a second, much more sensitive test of the theory.

If the new functional is successful, it will allow us to predict the structure and the properties
of nematic liquid crystals in the vicinity of inhomogeneities. It will thus contribute to an
improved microscopic understanding of surface phenomena such as surface anchoring on
rough and structured surfaces, or of defect structures and defect interactions. It also provides
a new approach to smectic ordering, and might lead to useful insight into the nature of the
nematic–smectic transition [54].
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